Metabolite uptake, stoichiometry and chemoautotrophic function of the hydrothermal vent tubeworm Riftia pachyptila: responses to environmental variations in substrate concentrations and temperature.
نویسندگان
چکیده
The hydrothermal vent tubeworm Riftia pachyptila is a dominant member of many hydrothermal vent communities along the East Pacific rise and is one of the fastest growing metazoans known. Riftia flourish in diffuse hydrothermal fluid flows, an environment with high spatial and temporal heterogeneity in physical and chemical conditions. To date, physiological and biochemical studies of Riftia have focused on Riftia's adaptations to its chemoautotrophic bacterial symbionts. However the relation between in situ physico-chemical heterogeneity and Riftia host and symbiont metabolism, in particular symbiont chemoautotrophic function, remain poorly understood. Accordingly, we conducted experiments using shipboard high-pressure respirometers to ascertain the effect of varying substrate concentrations and temperature on Riftia metabolite uptake and symbiont carbon fixation. Our results show that substrate concentrations can strongly govern Riftia oxygen and sulfide uptake rates, as well as net carbon uptake (which is a proxy for chemoautotrophic primary production). However, after sufficient exposure to sulfide and oxygen, Riftia were capable of sustaining symbiont autotrophic function for several hours in seawater devoid of sulfide or oxygen, enabling the association to support symbiont metabolism through brief periods of substrate deficiency. Overall, temperature had the largest influence on Riftia metabolite uptake and symbiont autotrophic metabolism. In sum, while Riftia requires sufficient availability of substrates to support symbiont chemoautotrophic function, it is extremely well poised to buffer the temporal and spatial heterogeneity in environmental substrate concentrations, alleviating the influence of environmental heterogeneity on symbiont chemoautotrophic function.
منابع مشابه
Effects of metabolite uptake on proton-equivalent elimination by two species of deep-sea vestimentiferan tubeworm, Riftia pachyptila and Lamellibrachia cf luymesi: proton elimination is a necessary adaptation to sulfide-oxidizing chemoautotrophic symbionts.
Intracellular symbiosis requires that the host satisfy the symbiont's metabolic requirements, including the elimination of waste products. The hydrothermal vent tubeworm Riftia pachyptila and the hydrocarbon seep worm Lamellibrachia cf luymesi are symbiotic with chemolithoautotrophic bacteria that produce sulfate and protons as end-products. In this report, we examine the relationship between s...
متن کاملEpifaunal community structure associated with Riftia pachyptila aggregations in chemically different hydrothermal vent habitats
The vestimentiferan tubeworm Riftia pachyptila (Polychaeta: Sibloglinidae) often dominates early succession stages and high productivity habitats at low-temperature hydrothermal vents on the East Pacific Rise. We collected 8 aggregations of R. pachyptila and the associated epifaunal community at 2 discrete sites of diffuse hydrothermal activity, in December 2001 and December 2002. Because of th...
متن کاملCloning and sequencing of a form II ribulose-1,5-biphosphate carboxylase/oxygenase from the bacterial symbiont of the hydrothermal vent tubeworm Riftia pachyptila.
The bacterial symbiont of the hydrothermal vent tubeworm fixes carbon via the Calvin-Benson cycle and has been shown previously to express a form II ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO). The gene cbbM, which encodes this enzyme, has been cloned and sequenced. The gene has the highest identity with the cbbM gene from Rhodospirillum rubrum, and analysis of the inferred amino ...
متن کاملA histidine protein kinase homolog from the endosymbiont of the hydrothermal vent tubeworm Riftia pachyptila.
The uncultivated bacterial endosymbionts of the hydrothermal vent tubeworm Riftia pachyptila play a central role in providing their host with fixed carbon. While this intimate association between host and symbiont indicates tight integration and coordination of function via cellular communication mechanisms, no such systems have been identified. To elucidate potential signal transduction pathwa...
متن کاملSulfide binding is mediated by zinc ions discovered in the crystal structure of a hydrothermal vent tubeworm hemoglobin.
Key to the remarkable ability of vestimentiferan tubeworms to thrive in the harsh conditions of hydrothermal vents are hemoglobins that permit the sequestration and delivery of hydrogen sulfide and oxygen to chemoautotrophic bacteria. Here, we demonstrate that zinc ions, not free cysteine residues, bind sulfide in vestimentiferan hemoglobins. The crystal structure of the C1 hemoglobin from the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 209 Pt 18 شماره
صفحات -
تاریخ انتشار 2006